A chemical synapse between two motion detecting neurones in the locust brain.

نویسنده

  • F C Rind
چکیده

The LGMD is the major source of visual input from the compound eye to the ipsilateral DCMD. Inactivating the LGMD or hyperpolarizing it, so it no longer spikes, abolishes the response of the DCMD to the visual stimulus. Synaptic transmission between the LGMD and DCMD neurones is chemical. A spike in the LGMD terminals induces a postsynaptic potential in the DCMD dendrites, with a transmission delay of 1 ms. There is a conductance increase in the DCMD during an LGMD-mediated PSP. The conductance increase occurs at membrane potentials when the current/voltage relationship of the DCMD membrane is linear, and at several different membrane potentials. The LGMD-mediated PSP within the dendritic region of the DCMD has a rise time of 1.3 ms, a half-time for decay of 2.2 ms and a total duration of 8.3 ms. In the cell body it has a rise time of 3.3 ms, a half-time for decay of 8 ms and a total duration of 21.3 ms. The amplitude of the LGMD-mediated PSP depends on the membrane potential of the DCMD. The PSP amplitude is increased by membrane hyperpolarization and decreased by membrane depolarizations. At a membrane potential 30 mV more positive than resting potential the extrapolated size of the PSP is zero. The synaptic efficiency of the LGMD-DCMD connection is usually 1.2. (formula; see text) There is a threshold of 13 mV in the LGMD before synaptic transmission occurs. Currents less than 13 mV are not transmitted in either direction across the synapse although they do reach the synaptic region if they are injected at the extremities of the neurones within the brain. Length constants for the LGMD are 0.36 mm between points c and d in the protocerebrum and 0.63 mm between point b in the optic lobe and point d in the protocerebrum. The length constant measured between the dendrite region of the DCMD and its cell body is 1.34 mm. DCMD spikes and PSPs follow spikes in the LGMD at a constant latency at frequencies up to 400 Hz. Usually a spike in the LGMD induces a spike in the DCMD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Directionally Selective Motion-detecting Neurones in the Locust Lobula and Their Synaptic Connections with an Identified Descending Neurone

The anatomy and physiology of two directionally selective motion-detecting neurones in the locust are described. Both neurones had dendrites in the lobula, and projected to the ipsilateral protocerebrum. Their cell bodies were located on the posterio-dorsal junction of the optic lobe with the protocerebrum. The neurones were sensitive to horizontal motion of a visual stimulus. One neurone, LDSM...

متن کامل

Motion detectors in the locust visual system: From biology to robot sensors.

Motion detectors in the locust optic lobe and brain fall into two categories: neurones that respond selectively to approaching vs. receding objects and neurones that respond selectively to a particular pattern of image motion over a substantial part of the eye, generated by the locust's own movements through its environment. Neurones from the two categories can be differentiated on the basis of...

متن کامل

The dopamine and 5-hydroxytryptamine content of locust and cockroach salivary neurones.

The salivary glands of the cockroach and locust are innervated primarily from two pairs of motoneurones, designated SN1 and SN2, in the suboesophageal ganglion. Intracellular cobalt fills and subsequent silver intensification were used to reveal the morphology of these cells in both species. Fluorescent microscopy, following treatment of the ganglion with glyoxylic acid, showed that in both spe...

متن کامل

Synaptic structure, distribution, and circuitry in the central nervous system of the locust and related insects.

The Orthopteran central nervous system has proved a fertile substrate for combined morphological and physiological studies of identified neurons. Electron microscopy reveals two major types of synaptic contacts between nerve fibres: chemical synapses (which predominate) and electrotonic (gap) junctions. The chemical synapses are characterized by a structural asymmetry between the pre- and posts...

متن کامل

Nitric oxide synthesis in locust olfactory interneurones

The brain of the locust Schistocerca gregaria contains a nitric oxide synthase (NOS) that has similar properties to mammalian neuronal NOS. It catalyses the production of equimolar quantities of nitric oxide (NO) and citrulline from l-arginine in a Ca2+/calmodulin- and NADPH-dependent manner and is inhibited by the Nomega-nitro and Nomega-monomethyl analogues of l-arginine. In Western blots, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 110  شماره 

صفحات  -

تاریخ انتشار 1984